Thursday, April 26, 2012

Will Organic Food Fail to Feed the World?


NEW AGRICULTURE: In order to both feed more people and preserve the environment, new methods of farming will be needed. Image: © iStockphoto.com / Yin Yang

Supplemental Material Listen to this Podcast Audio Can Swine Flu Be Blamed on Industrial Farming? Listen to this Podcast Audio The Future of Farming

Food for hungry mouths, feed for animals headed to the slaughterhouse, fiber for clothing and even, in some cases, fuel for vehicles—all derive from global agriculture. As a result, in the world's temperate climes human agriculture has supplanted 70 percent of grasslands, 50 percent of savannas and 45 percent of temperate forests. Farming is also the leading cause of deforestation in the tropics and one of the largest sources of greenhouse gas emissions, a major contributor to the ongoing maul of species known as the "sixth extinction," and a perennial source of nonrenewable groundwater mining and water pollution.

To restrain the environmental impact of agriculture as well as produce more wholesome foods, some farmers have turned to so-called organic techniques. This type of farming is meant to minimize environmental and human health impacts by avoiding the use of synthetic fertilizers, chemical pesticides and hormones or antibiotic treatments for livestock, among other tactics. But the use of industrial technologies, particularly synthetic nitrogen fertilizer, has fed the swelling human population during the last century. Can organic agriculture feed a world of nine billion people?

In a bid to bring clarity to what has too often been an emotional debate, environmental scientists at McGill University in Montreal and the University of Minnesota performed an analysis of 66 studies comparing conventional and organic methods across 34 different crop species. "We found that, overall, organic yields are considerably lower than conventional yields," explains McGill's Verena Seufert, lead author of the study to be published in Nature on April 26. (Scientific American is part of Nature Publishing Group.) "But, this yield difference varies across different conditions. When farmers apply best management practices, organic systems, for example, perform relatively better."

In particular, organic agriculture delivers just 5 percent less yield in rain-watered legume crops, such as alfalfa or beans, and in perennial crops, such as fruit trees. But when it comes to major cereal crops, such as corn or wheat, and vegetables, such as broccoli, conventional methods delivered more than 25 percent more yield.

The key limit to further yield increases via organic methods appears to be nitrogen—large doses of synthetic fertilizer can keep up with high demand from crops during the growing season better than the slow release from compost, manure or nitrogen-fixing cover crops. Of course, the cost of using 171 million metric tons of synthetic nitrogen fertilizer is paid in dead zones at the mouths of many of the world's rivers. These anoxic zones result from nitrogen-rich runoff promoting algal blooms that then die and, in decomposing, suck all the oxygen out of surrounding waters. "To address the problem of [nitrogen] limitation and to produce high yields, organic farmers should use best management practices, supply more organic fertilizers or grow legumes or perennial crops," Seufert says.

In fact, more knowledge would be key to any effort to boost organic farming or its yields. Conventional farming requires knowledge of how to manage what farmers know as inputs—synthetic fertilizer, chemical pesticides and the like—as well as fields laid out precisely via global-positioning systems. Organic farmers, on the other hand, must learn to manage an entire ecosystem geared to producing food—controlling pests through biological means, using the waste from animals to fertilize fields and even growing one crop amidst another. "Organic farming is a very knowledge-intensive farming system," Seufert notes. An organic farmer "needs to create a fertile soil that provides sufficient nutrients at the right time when the crops need them. The same is true for pest management."

Source: Science News, Articles and Information

0 comments:

Post a Comment